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Development of a general surface contour 
by ion erosion. 
Theory and computer simulation 

d. P. D U C O M M U N ,  M. C A N T A G R E L ,  M. M A R C H A L *  
Thomson-CSF, Laboratoire Central de Recherches, 91401 Orsay, France 

An analytical treatment of the development of a general contour under ion bombardment 
is proposed. The derived equations relate the properties of the eroded material through its 
yield variation upon the angle of incidence, S (8). New specific angles (Os, and 0s2) are 
introduced which limit regions where the evolution process of the surface may be different. 
The theory allows prediction of the number of angular points which will appear in each 
region. 

A computer simulation program is used to describe the evolution of sine-type 
surfaces.With infinite time, such profiles in relief above a horizontal plane, tend towards 
the steady state which exists in a horizontal plane. The model is compared to one 
previously described. 

1. Introduction 
Changes in surface topography of solid surfaces 
eroded by a low energy ion beam have often 
been reported. Stewart and Thompson [1], 
assuming that the dependence of the sputtering 
yield S on the angle of incidence 0 could possibly 
be responsible for the observed microscopic 
surface features, were the first to give the 
equations of motion of the intersection of two 
planes during erosion. These results, applied to 
the erosion of a step, show the dominant role 
played by the planes inclined at an angle 0p 
corresponding to the angle where the sputtering 
yield is maximum. 

Using the same basic assumptions, Nobes et al 
[2, 3] developed a theory for the sputtering of 
amorphous solids by an ion beam and the 
changes in surface topography to which this 
sputtering leads. This model shows that a 
steady state is reached when the surface topo- 
graphy consists of planes aligned either parallel 
or perpendicular to the direction of the ion beam 
and inclined at ___ 0p to the horizontal. Using the 
small displacements method, the same authors 
[4] have given an analytical treatment of surface 
profile, then a computer simulation was devised 
to model the development of a sinusoidal surface 
by iterations. 

Present  address :  LCC-CICE,  21000 Di jon ,  France.  

It was then of prime interest to find some 
non-iterative method of following the develop- 
ment of a general surface contour. Thus, using 
the same form of S (0), we have developed a new 
model to predict the surface evolution with time. 
A computer simulation program was established 
by which means the evolution of a general 
surface contour subjected to ion bombardment 
can be drawn at any time using the non-iterative 
method. 

This computer simulation was applied to 
several different suface contours and the results 
are discussed. 

2. Analyt ical  treatment of the 
development  of a surface contour 

2.1. Theory 

The fundamental hypotheses are the following. 
1. For simplicity we consider the erosion of a 

surface contour (C) lying in the (xoy) plane and 
represented by the equation y = f (x ,  o). 

2. The bombarded material is homogeneous 
and isotropic. 

3. Planes (assumed as straight lines in the 
model) move parallel to themselves by erosion. 

4. Secondary effects, such as defects intro- 
duced by ion bombardment, redeposition of 
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Figure 1 Variat ion of  sput ter ing with angle  of  incidence. 

sputtered materials, diffusion, etc, will not be 
considered. 

5. The variation of S with 0 is a function which 
has the form shown by Fig. 1. S is So for normal 
incidence, (0 -- 0), increases up to a maximum at 
0 =  09 and decreases to S = 0 at 0 = 90 ~ . 

Let us consider that (C), y = f ( x ,  o) is the 
envelope of a family of straight lines (D) 
described by: 

y - x f ' (x i )  + x i f ' (x i )  - f ( x i )  = 0 (1) 

where x~, Yi = f(x~) is an arbitrary point of C. 
The family of straight lines (D') transformed 

from the family (D) by the ion beam erosion is: 

y - x f ' (x i )  + x i f ' (x i )  - f ( x i )  + A(xi) = 0 (2) 
where A(xi)  is the displacement of a straight line 
(D) parallel to itself. 

Introducing the parameters that govern the 
ion-beam erosion, A(xi)  can be expressed as : 

A(xi) = A [0(x,)] = ~- tS(O) (3a) 
t/ 

with tan 0 = f ' (x~) and - 7r/2 < 0 < • (3b) 

where r = ion flux (cm -2 sec -1) in the negative 
oy direction, n = atomic density of the target in 
atoms cm -3, t = time in sec, S = sputtering yield 
in atoms per incident ion. 

The new surface contour (C') is the envelope 
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of (D') and is given by solution of the system 
of equations: 

t 
' y  - x f ' (x i )  + xi f ' (xi)  - f ( x i )  + A(xi)  = 0 (4) 

3A(xi) 
- x f " ( x O  + x, f"(xi)  + Sx----~-- = 0 (5) 

Equation 5 is equivalent to: 

1 ~A(xi) 
x = xi + f" (x i ) "  3x~ (6) 

Substituting Equations 3a and b into Equations 
6 and 4 leads to: 

dS(0) 
r t cos ~ 0 (7) x =  xi + n dO 

~ I dS(0) S(O)I .  (8) y = f ( x i )  + - t sin0cos0 dO 

Equations 7 and 8 are parametric equations of 
(c'). 

2.2. Discussion 
This model and the proposed analytical treat- 
ment avoid iterative calculus to obtain the curve 
(C') at any time t. 

According to Equations 7 and 8, at any (xi, yi) 
point of (C) there corresponds a point on (C'). 
In such a mathematical treatment, the angles 0 
measured on (C) are preserved on (C'). Later, we 
will see that, physically speaking, some points 
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(x,y) of the transformed curve disappear, x and 
y are linearly dependent on t and q~/n, and also 
depend on the angle of incidence 0, explicitly 
through the trigonometric functions of 0 (cos ~ 0 
or sin 0 cos 0) and implicitly through the variation 
of S' and S with 0. Several particular cases may 
be observed. 

(a) A translation in direction y only is obtained 
if: 

q~/n t cos ~ 0 dS(O) dO - 0 (9) 

that is: 
either cos 0 = 0 0 = zr/2 

dS(O) f 0 = 0 
o r 7  = 0  ~ 0 = 0 p  

IS(O) = constant V0 

Those conditions are equivalent to the con- 
ditions found by Nobes et al [2, 3] using a 
different analytical approach. 

(b) The contour will remain unchanged if 

Ay 
- - - b  VO A x -  

Ay 1 S(O) 
A--x = tan 0 - = (10) cos z 0 dS(O)/dO b VO 

where b is a constant and S(O) should be of the 
form: 

S(0) = K(tan 0 - b). (11) 

(c) A translation on the x-axis alone will be 
obtained if: 

[ dS(O) s(o)] 0 ( 1 2 )  q~n-t sin0 cos0 dO = ' 

This is a particular case of (b) where: 

Ay 
yx = 0  

then b = 0 and S(O) = K tan 0. 
Generally, the translations along x and y 

occur simultaneously. So it becomes necessary to 
study (C') as defined by Equations 7 and 8 to 
follow the development of the surface contour 
and to predict the existence of cusps and double 
points. 

Cusps, when existing are given by: 

dx d[Ax(x,)] 
dx---~- = 1 + dx~ - 0 (13) 

d ~  = (14) 
d[Ay(x~)] 

= f'(x~) + dx~ 0 

Equations 13 and 14 are interdependent and 
lead to: 

- [ d~S(O) dS(O) 7 
~b t cos ~ 0 2 sin 0 cos 0 (15) 
n dO S --d-if-] 

cos 20f"(xO = -- 1 
equivalent to: 

dS(O) d*S(O)] f~(x,) 
n -~t 2sinO d---O- - c ~  (16) 

= R ( x .  o) 

where R(xi, o) is the radius of curvature of (C). 
Equation 16 will be verified if R(xi, o) and 

Z(x~, t) = 

t S s i n 0 - - - c o s 0  
n dO If"[ 

are secant. 
As R(x~, o) >1 0 the intersection between 

R(x~, o) and Z(xi, t) will possibly occur if 
Z ( x .  t) > O. 

Let us designate: 

dS(0) d2S(0) 
Z * ( 0 ) = 2 s i n 0  d-----if- - c ~  dO S 

with 0 ~ [ -  zr/2, + ~r/2], S being defined in this 
interval. 

Let us analyse the .function Z* (0). If  S(O) is of 
the general form described by Fig. 1, the function 
Z* (0) = 0 has two roots Osl and Os~ (Os~ > OsO, 
Z* (0) being positive between OSl and Os2 and 
negative elsewhere. The angle Ov corresponding 
to the maximum of S(O) is always between the 
roots OSl, Os~ (Fig. 2). 

For a given contour (C) described by the 
Equation y = f (x ,  o), the slope of the tangents of 
the curve may vary between two values 0m and 
0~r. Then the function Z* (0) associated with this 
given curve (C) is to be studied in this interval 
[0m, 0M]. The change in the algebraic sign of the 
function Z* (0) in the interval [0m, 0rl] depends 
whether Osl and Os2 are included or not in this 
interval. 

The algebraic sign of Z(x,, t) is finally depen- 
dent on that of Z* (0) and on that off"(x,). The 
following example gives the complete analysis of 
the different possible intersections between 
R(x~ o) and Z(x, t) in the case of (C) defined by 
y = a sin x. 

The cusps, when they exist, can be associated 
in pairs. Each pair of cusps gives rise to a double 
point. 
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Figure 2 Variat ion o f  Z *  (0) versus the angle of  incidence. 

3. Appl ica t ion  to a contour  represented 
by y = a sin x 

x 4 -  ~/2, 3~/2] 

3.1. S tar t ing  fo rm of S(O) 
Taking  S(O) = 3.2696 cos 0 + 13.1059 cos ~ 0 - 
15.3755 cos 4 0 as already presented by Car ter  et 
al [4]. S(O) is m a x i m u m  for  0v = 45 ~ Z*  (0) is 
represented by Fig. 2. Z*  (0) is zero for  0S 1 = 

20 ~ and Os~ = 58~ The  m a x i m u m  inclination 
0M of  the function y = a sin x is given by tan 
0M = a. Fo r  x = 0 the algebraic sign of  f "(x) 
changes a n d f " ( x )  < 0 when x > 0. 

3.2. Ex i s t ence  of c u s p s  
The intercepts of  the function Z*  (0) being: 

Osl = 20 ~ tan Osl = 0.364 
0s2=58 ~ 15' t a n 0 s 2 =  1.616 

Three possibilities occur:  ; 

(a) 0• < Osl 
(b) Osl < OM < Os2 
(c) Os2 < OM. 

They can be represented by:  

y = 0.1 sin x (tan 0al = 0.1) 
y = s i n x  (tan 0~ = 1) 
y =  5 s i n x  ( t a n 0 M =  5) .  

Table  I summarizes  the occurrence of  the inter- 
sections between R(x~, o) and Z(x~, t). Figs. 3 to 5 
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represent  the graphical  intersections. Thus  we 
find: 

y = 0.1 sin x:  one possible intersection zone 
(Table Ia) that  is represented in Fig. 3 by  two 
points abou t  the axis x = ~r/2. Then  (C') will 
show two cusps in the interval x ~ [ -  rr/2, 3 ~r/2] ; 

y = sin x:  three possible intersection zones 
(Table Ib)  Fig. 4 show that  there are three pairs o f  
points  symmetrical  about  the axis x = ~r/2. Then  
(C') will show six cusps in the interval  x ~ [-~r/2,  
3 ~/2]; 

y = 5 sin x:  five possible intersection zones 
(Table Ic). As shown by Fig. 5, there are, in fact, 
ten intersections in symmetr ical  pairs abou t  the 
axis x = rr/2. (C')  will show ten cusps. 

3.3. D o u b l e  po in t s  
Following previous results we should have:  

- one double poin t  on the y-axis for  y = 0.1 
sin x;  

- three double points,  one on the y-axis and 
two symmetr ical  points for  y = sin x. 

- five double points,  one on the y-axis, the 
others in symmetr ical  pairs for  y = 5 sin x. 

3.4. Note 
The mathemat ica l  analysis o f  double points  and 
cusps predicted more  features than  we expected. 
A physical interpretat ion of  these points  showed 
that  the extra features disappear  when a t ime 
paramete r  is introduced. This will now be dis- 
cussed.  
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TABLE I Possibilities of intersections between the curves R(x~, o) and Z(x~, t) for y = a sin x (the zones where 
intersections can occur are enclosed in a thick line, cross-hatched regions correspond to the zones where 
the functionsf"(x), Z* [0(x)] or Z(x~, t) are not defined). 

(a) 

I 011 e 1 2  n )2  I I I [ I , I ~, i i i J 
e s 2 e s l  e u 9 , - e u - e s l - e s 2  - I - I / 2 -  e s 2 - e s l - e M O  

+ _ ! _ + i + _ i _ + i L i e ) =  7* = : ! - - i  

(b) 

f "  i +  + i + +', 

~'Jr,  Z 
z _ - ~ e )  i - !  -i. + - i - + + - -  + + - ' - + + - 

, ', 

z*(e{x} )  - + + " + § - !  
,, ', 

- 

(c) 

(9 e s 2  e M . 9 - e s l - e s 2 - e M - n / 2 - E  

f "  i +  + + - - - !  . . . . .  

i-i - -i! z ' / e l  + - + - + - - i - - 
i 

Z ( e i x l ) = l -  + - - + - i -  + - 
i 

Z ( x i , t } i -  + + - , - 
, ,, 

I I 
- e s 2 - e s l  

+ + + 

4 -  - 

- [ .  _ , 

4 .  C o n t o u r  d e v e l o p m e n t  

A computer program to solve Equations 7 and 8 
was devised allowing one to draw (C') f rom (C) 
using a non-iterative method. Starting from: 

~ t  = r Nto, ~ to 5 • 10 -2 cm 

N is an integer in the program. 
The initial contour is defined by 101 points 

equally spaced along the x-axis. Fig. 6 shows the 
results of  the application of this program to the 

curve (C) represented by y = 0.1 sin x. A double 
point, and two cusps appear for N / >  7. 

The part  of  the curve (C') which contains the 
cusps over the double point has no physical 
significance, so the points (x, y) of  this part  of  
(C') vanish. The same phenomena occur when 
the double point is not on the symmetry axis. So 
the physical contour (C') will exhibit corners 
instead of double points of  the mathematical 
contour. 

Then it becomes necessary to add to the initial 
computer program: 
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f(x)=0.1 sinx 
Figure 3 I n t e r s e c t i o n  b e t w e e n  the  cu rves  R(x~, o) and Z(xi, t) for f ( x ) =  0 . l  s in  x.  

,x 

R I R(xi'O) 

t /  /2' \. / G  \ 

1s 

f(x)=sinx 

Figure 4 Intersection between the curves R(xi,o)and Z(xi,t) for f(x) = sin x. 

a p rogram to search for  cusps; 
a program of  calculation o f  the double points;  
a p rogram to strike out  the points that  have no 

physical significance. 
Using this completed computer  program,  the 

results obtained for  y --- 0.1 sin x and y = 5 sin x 
are shown in Fig. 7. 

The general tendency of  a sinusoidal contour  
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is to progressively t ransform into a horizontal  
straight line, the stages o f  this evolution being 
different depending upon  the maximum slope 
0• of  the original profile. 

(1) 0N < Osl. The evolution toward a hori-  
zontal  plane occurs in only one step. A corner is 
created and at this point  symmetrical planes 
vanish. 
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R Z  

R(xi,O) 
i ~ i 
i . . . .  W ~ /  .-m- ....... 

i / 

N= 
2 

10 

f (x) :5sinx 

/// 

i 

Z(x i,t) '~ [ 

Figure 5 I n t e r s e c t i o n  b e t w e e n  t h e  c u r v e s  R(x~, o) a n d  Z(xi, t) f o r  f(x) = 5 s in  x .  

Figure 6 M a t h e m a t i c a l  e v o l u t i o n  o f  a p r o n e  de f i ned  b y  t h e  f u n c t i o n  y = 0.1 s in  x .  

(2) Osl < O• < Os~. Two different cases can be 
expected. 

0M < 0p. The evolution of the profile occurs in 
two steps: (1) symmetric planes vanish with 
creation of corner; (2) two other corners appear 

between the planes with slope 0M and the planes 
that have a lower slope. When the planes with 
slope near 0M have completely vanished, the 
behaviour is identical to that of the first case. 

OM > 0 v. The same steps occur in the develop_ 
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Figure 7 Evolution of  profiles defined by the function y = a sin x. 

t:; 
a = l  

ment of the profile but the role of the planes 
with slope 0p is predominant instead of that of 
planes of 0u, 

(3) Osl < Os2 < 0u. Three steps exist: planes 
with slope 0p grow at the expense of planes with 
slope higher than Op, two symmetrical corners are 
created between the planes with slope 0M and 0p. 
When the planes with slope 0~ have vanished the 
development become identical to (2). 

4.1. Time dependence of the existence of 
angular points 

Nc being the lower value of N where all pre- 
dicted cusps appear on the mathematical trans- 
formed contour (C'), Figs. 3 to 5, show that cusps 
may appear when Nc is high enough. Besides, Ne 
increases as 0~ approaches through upper values 
the lower limit of each of the three intervals 
defined: 0, Osl, Os~. N represents the ion beam 
erosion time, and Ne may be longer than the time 
of disappearance of the point that generate the 
corner on the physical contour. Then these 
points do not appear. 

The major consequence of the introduction of 
time as a physical parameter that governs the 
appearance of corners is the shift through 
higher values of the limits between the different 
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expected cases. This shift is a function of the 
initial contour through its radius of curvature. 

5. Discussion 
Two new models on the evolution of surface 
profiles by ion bombardment have been recently 
published [5, 6]. We make here a comparison 
between these new approaches and our analytical 
treatment. In the following sections we compare 
the theoretical approaches and the results 
obtained in each of three cases. 

5.1. The three models are equivalent 
The equivalence between Barber's theory and 
Carter's theory is demonstrated by Carter et al 
[5]. We can easily show the equivalence between 
the three models by comparison of Equations 16 
and 17 of the study of Carter et al [5] and 
Equations 7 and 8 in our study: these equations 
are identical. 

5.2. Results 
While Barber's model is a graphical method, 
both other studies involve a computer simulation 
program. Barber's model and our model show 
that a sinusoidal profile submitted to ion 
bombardment erodes and leads, with infinite 
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time, to a horizontal plane. We note that 
corners appear during erosion. 

At this level a difference appears between the 
results obtained by Catana et al [4] and those 
predicted by both other studies. With the same 
initial profile, Carter's model leads to a steady 
state which consists of a triangular pit and a 
horizontal plateau. The angle of the sides of this 
triangle is equal to 0", where 0* verifies the 
relation S(O)* = S(0). These last results are not 
in agreement with those obtained by others 
methods. We can show that planes with slope __ 
0* are not, in fact, a steady state. 

iI 1 [iI 
/ / ~ planes of slope •  

"4 x potential!y p re sen t  

slope E)p 

of slope -~e* 

a 

b 

c - -  

d -  

e 

Figure 8 E v o l u t i o n  o f  a t r i a n g u l a r  p i t  b y  i o n  e r o s i o n .  

Let us consider the situation depicted in Fig. 
8a. The planes initially present have a slope 
_+ 0". According to Frank's theory [7], planes 
of intermediate orientations are potentially 
present at Q. In particular, planes of slope 
__ 0p exist at Q. These planes appear first at the 
expense of planes of higher slope, as it is shown in 
our study, and planes of slope + 0* disappear. 
Then the 0p planes vanish and the equilibrium 
topography is also a horizontal plane. The 

changes in surface topography are depicted in 
Fig. 8b to e. 

5.3. Particular values of 0:0,, Osl, Os2 
Carter et al [5] have shown that the angle 0p, 
where the sputtering yield is maximum, is 
corresponding in Barber's model to the point on 
the erosion slowness curve (other than 0 = 0) for 
which the normal at the polar diagram is parallel 
to the 1/V axis. We show in the Appendix that 
Osz and Os 2 obtained in our study are corres- 
ponding to the points of geometrical inflexion 
on the erosion slowness curve. At these points the 
angles between the "dissolution trajectories" 
and the direction of ion beam are extreme. All 
trajectories are located in the angle formed by 
these two limiting trajectories, as shown in Fig. 
9a, which represents the erosion slowness curve 
for the empirical form of S(O) used by Catana 
et al in their study and in Fig. 9b, which show the 
erosion of a spherical relief with a maximum 
slope higher than Os2. 

6. Conclusions 
The proposed analytical treatment, the equations 
and the computer simulation program to which 
this treatment leads can be applied to any 
general contour of the form y =f (x ,  0); y and its 
first derivative must be continuous. A general 
contour, in relief above the horizontal plane, is 
progressively removed by ion erosion. For 
infinite values of time, the last stage of the 
evolution is a horizontal plane normal to the ion 
beam, this situation being a steady state. The 
development of such a general contour is strictly 
dependent of the material subjected to erosion 
through S(O). The position of 0M regarding the 
values Osl and Os2, roots of Z (0) = 0 gives rise, 
in the example of sinusoidal contour, to three 
different cases. 

(1) 0• < Osl < Op < Os2. The steady state is 
obtained with creation of only one corner. 

(2) OSl < OM < Os2 with Os 1 < Op < Os2. The 
surface feature is removed with appearance of 
three corners, one of them on the axis of 
symmetry, the other two symmetrical about this 
axis. The maximum slope that can be reached at 
the corner located on the axis of symmetry is 
0 Ni f 0 ~  < 0 p o r 0 p i f 0 M >  0p. 

(3) Os 1 < Op < Os2 < 0M. Five corners, one on 
the axis of symmetry and the others in symmetr- 
ical pairs, appear during evolution towards the 
horizontal plane. Planes with slope 0p appear 
first at the expense of planes of higher slope, then 
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Figure 9 (a) L i m i t i n g  t ra jec tor ies  o n  the  e ro s io n  s lowness  curve .  (b) E r o s i o n  o f  a spher ica l  profile.  

these 0p planes vanish. Planes with slope 0p are 
non-stable. 

More extensively, a surface contour above a 
horizontal plane without angular points, sub- 
jected to ion erosion transforms into a surface 
with a predictable number of angular points and 
tends to a horizontal plane asymptotically with 
time. The number of angular points depends on 
the geometry of the contour subjected to erosion 
(OM, R) and on the material through the form of 
S(O). 

Three types of planes become predominant in 
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the development of the contour: (1) the horizon- 
tal planes that are a steady state position; (2) 
the vertical planes, remaining unchanged by 
erosion, and (3) the planes with slope 4- 0p. 
The three models proposed are shown to be 
equivalent. The results reported by Catana et al 
are not in agreement with those obtained in both 
other studies, which lead to identical results. The 
difference is certainly a consequence of a spur- 
ious computational procedure used by Catana 
et al. 

Barber et a/'s model allowed us to propose an 
additional interpretation of the particular values 
Osl and 0s~ arising in our study. 



dr(0) 
+ -d-O- sin 0 + V(O) cos 0 

Appendix 
In our study we have found that 

dS(0) 
Ax  = r t cos ~ 0 (A1) 

n -Y0- 

r [ dS(0) S(0)] (A2) d y  = - t s i n 0 c o s 0  dO 

dS(0) d2S(0) (A3) 
Z* (0) = 2 sin 0 d-----O- - cos 0 dO 2 

The sputtering yield, S(O), and the sputtering 
rate, V(O), are related by the relation 

v(O) = ~ s(O)cos 0. 

In terms of V(O), Equations A1 to A3 can be 
written: 

[dV(O) ] 
Z x  = t L dO cos 0 + Vsin 0 (AI') 

Ay = t sinv ~ V(O) cos O (A2') 

dW(0)l 
z * ( o ) = -  v(o)+ dO, J "  (AY) 

OSl and Os2 are the roots of the equation Z* 
(0) = 0, therefore 

d2V(0) 
V(O) + . dO 2 - 0  

with r = 1/[V(O)] this relation becomes 

, (lr)" - +  = 0 .  
r 

This relation means that points of geometrical 
inftexion are present on the curve r(O). At these 
points corresponding values of 0 are Ost and 
Os 2 . 

If  r is the angle between the "dissolution 
trajectory" and the direction of ion beam we have 

Ax dV(O)/dO + V(O) tan 0 
t a n r  =~yy = t a n 0 d V / d 0 -  V(O) . (A4) 

Let us search the values of 0 for which tan r is 
extrema. We have 

(Ax)' Ay - (Ay)' Ax  
(tan ~b)' = (Ay)~ = 0 

d~V(0) dV(0) sin 0 + - -  cos 0 with (Ax)' dO 

Av) 
l 

d,V(O1 
=cos0  V(O) + dO2 J 

dr(O) dW(O) 
( A y ) ' =  d ~ C ~  ~ s i n 0  

dr(O) 
+ V(O) sin 0 - d-----0- cos 0 

= s i n 0  V(O) + ~ j 

(Ax)' and (Ay)' are simultaneously equal to zero 
for the two values of 0 : Osl and Os2. Also (tan ~b)' 
= 0 for Osl and Os~. The angles r and ~b z 
associated to OSl and Os2 are the limits of the 
angles possible between dissolution trajectories 
and ion beam direction. 

In Fig. 10 Ax, Ay, Z* and tan r versus angle 
0 are drawn. It is shown that Ax, Ay and tan 
reach extrema for the same values Osa and Os2. 
At these points Z* is equal to zero. 
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Figure 10 Variations of Z* (0), Ax(O), Ay (0) and tan r 
(0) ve r sus  a n g l e  o f  i nc idence  0. 
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